Diketahuiberbagai matriks-matriks berikut: Tentukan: A + B. Macam - Macam Matriks. Matriks mempunyai macam - macamnya, yaitu antara lain : Matriks Nol yaitu sebuah matriks yang dimana seluruh elemennya ialah 0 (nol). Matriks nol yang biasanya dinotasikan bersama huruf O diikuti dengan ordonya, O m x n. Contoh : Jenis Matriks. Jikamatriks A = ( ) maka nilai x yang memenuhi persamaan | | = 0 dengan I 7 2 matriks satuan dan | | determinan dari A- xI adalah. Jawab : | | = 0 3 6 1 0 |( )( )| = 0 7 2 0 1 3 60 |( )| = 0 70 2 (3)(2) 42 = 0. 6 3 2 + 2 42 = 0. 2 5 + 36 = 0 0 3 1 5 7 2 5. Diketahui matriks A = ( ), = ( ) , = ( ) . Nilai k yang 4 + 5 1 Contohsoal 1. Tentukan invers matriks . Pembahasan / penyelesaian soal. Diketahui a = -8, b = -6, c = 7 dan d = 5. Dengan menggunakan rumus invers matriks diperoleh: Contoh soal 2. Tentukan invers matriks. Diketahui a = -3 , b = -4, c = 4 dan d = 5, maka invers matriks P sebagai berikut: Contoh soal 3 (UN 2019 IPS) 2 Diketahui matriks , invers matriks AB adalah Pembahasan: Jawaban: A 3. Matriks X yang memenuhi: adalah Pembahasan: 12x = -25 atau y - 12x + 25 = 0 Jawaban: B 24. Jika M matriks berordo 2 x 2 dan maka matriks M 2 adalah Pembahasan: Jawaban: C 25. Jika matriks adalah matriks Pembahasan: Jawaban: E. By Widi di January 25 Diketahuimatriks. 1 0. A 2 1 3 4. det A t B . Jika B = A-1 dan At merupakan transpos dari A. 2 Tentukan nilai x det 2 A det 5B. Dokumen Serupa dengan Determinan Matriks. Karusel Sebelumnya Karusel Berikutnya. Ukuran Pemusatan Data aplikasi. Diunggah oleh. Kemal Gokil. Sistem Imunitas to Kmb 3. OperasiBaris Elementer (OBE) adalah salah satu alternatif dalam menyelesaikan suatu bentuk matriks seperti menentukan invers matriks dan penerapan matriks pada sistem persamaan linear menggunakan dua cara yaitu "Eliminasi Gauss" dan "Eliminasi Gauss-Jordan". Materi OBE ini sebenarnya dipelajari pada tingkat perkuliahan, untuk tingkat SMA jarang yang membahasnya. . Determine todas as matrizes A, 2x2, diagonais os elementos que estão fora da diagonal são iguais a zero que comutam com toda matriz B, 2x2, ou sejam tais que AB = BA, para toda matriz B, 2x2. Passo 1Primeiramente, sabemos que A é uma matriz 2x2 diagonal, ou seja A = x 0 0 y E B é uma matriz 2x2 qualquer B = a b c d Passo 2Agora, devemos descobrir quais os x e y em A que permitem que A e B comutem, ou seja AB = BA. Por multiplicação de matrizes A B = x a + 0 c x b + 0 d 0 a + y c 0 b + y d Reescrevendo A B = a x b x c y d y E a outra multiplicação BA pode ser descrita por B A = a x + b 0 a 0 + b y c x + d 0 c 0 + d y Reescrevendo B A = a x b y c x d y Passo 3Por fim, como foi dito, para que A e B comutem, AB = BA. Ou seja a x b x c y d y = a x b y c x d y Dessa relação, tiramos que bx = by e cx = cy, para todo b e todo c. RespostaA matriz A deve ser diagonal e ter os elementos da diagonal iguais. Assim A = x 0 0 x , para todo x. Exercícios de Livros RelacionadosResolva os sistemas seguintes achando as matrizes ampliadas linha reduzidas à forma escada e dando também seus pontos, os pontos das matrizes dos coeficientes e, se o sistema for possível, o grau de lVer MaisEncontre todas as soluções do sistema x 1 + 3 x 2 + 2 x 3 + 3 x 4 - 7 x 5 = 14 2 x 1 + 6 x 2 + x 3 - 2 x 4 + 5 x 5 = - 2 x 1 + 3 x 2 - x 3 + 2 x 5 = - 1Ver MaisResolva os sistemas seguintes achando as matrizes ampliadas linha reduzidas à forma escada e dando também seus pontos, os pontos das matrizes dos coeficientes e, se o sistema for possível, o grau de lVer MaisReduza as matrizes à forma escada reduzida por linhas. 1 - 2 3 2 - 1 2 3 1 2 - 1 3 3Ver MaisResolva os sistemas seguintes achando as matrizes ampliadas linha reduzidas à forma escada e dando também seus pontos, os pontos das matrizes dos coeficientes e, se o sistema for possível, o grau de lVer MaisVer TambémVer tudo sobre Matrizes e Sistemas LinearesLista de exercícios de Análise da Multiplicação de MatrizesVer exercício - 8bVer exercício - 10a PertanyaanDiketahui matriks A = 2 3 ​ 4 1 ​ dan I = 1 0 ​ 0 1 ​ . Jika matriks A − k I adalah matriks singular, nilai k yang memenuhi adalah ...Diketahui matriks dan . Jika matriks adalah matriks singular, nilai yang memenuhi adalah ...Jawabannilai k yang memenuhi adalah − 2 atau 5 .nilai yang memenuhi adalah .PembahasanPertama, tentukan matriks A − k I A − k I ​ = = = ​ 2 3 ​ 4 1 ​ − k 1 0 ​ 0 1 ​ 2 3 ​ 4 1 ​ − k 0 ​ 0 k ​ 2 − k 3 ​ 4 1 − k ​ ​ Ingat rumus determinan matriks A = a c ​ b d ​ → det A = ad − bc . Diketahui matriks A − k I adalah matriks singular, yang artinya determinan matriks A − k I bernilai 0. Dengan demikian, det A − k I 2 − k 1 − k − 4 â‹… 3 2 − 2 k − k + k 2 − 12 k 2 − 3 k − 10 k + 2 k − 5 ​ = = = = = ​ 0 0 0 0 0 ​ k + 2 = 0 k = − 2 ​ ∨ ​ k − 5 = 0 k = 5 ​ Jadi, nilai k yang memenuhi adalah − 2 atau 5 .Pertama, tentukan matriks Ingat rumus determinan matriks . Diketahui matriks adalah matriks singular, yang artinya determinan matriks bernilai 0. Dengan demikian, Jadi, nilai yang memenuhi adalah . Perdalam pemahamanmu bersama Master Teacher di sesi Live Teaching, GRATIS!10rb+Yuk, beri rating untuk berterima kasih pada penjawab soal!BRBatara Rafael SianiparPembahasan tidak lengkapnsnabilah sitiJawaban tidak sesuai Invers matriks merupakan salah satu metode penting sebagai penyelesaian soal-soal matriks dalam Matematika. Istilah-istilah yang sering dikenal dalam materi matriks yaitu, matriks persegi, matriks baris, matriks kolom, matriks nol, matriks diagonal, matriks identitas, matriks skalar, tranpos matriks, dan invers matriks. Hai Quipperian! Apa kabar semuanya? Semoga masih dalam keadaan sehat dan enggak galau, ya karena materi Matematika yang satu ini. Enggak heran makanya kamu mampir ke sini untuk belajar lebih jauh tentang invers matriks, iya kan? Invers matriks adalah salah satu metode penting untuk menyelesaikan soal-soal di dalam sebuah matriks. Bagaimana rumusannya? Soal seperti apa yang dapat diselesaikan dalam bentuk matriks? Untuk menjawab pertanyaan tersebut, Quipper Blog akan mengulasnya dengan memberikan contoh-contoh soal beserta pembahasannya. Tertarik kan, Quipperian? Cusss, kita kepoin! Apa Itu Invers Matriks Berikut ini merupakan tabel dan matriks dari kandungan makanan. Kandungan Makanan Jenis makanan setiap ons K L M Kalsium 30 10 30 Besi 10 10 10 Vitamin 10 30 20 Dari gambar dan tabel diatas, Quipperian dapat melihat jenis tabel kandungan makanan yang terdiri dari variabel kalsium, besi, dan vitamin serta jenis makanan setiap ons-nya. Tabel kandungan tersebut diubah ke dalam bentuk sebuah matriks sehingga akan lebih memudahkan perhitungan variabel tersebut. Pada gambar diatas, terlihat matriks terdiri dari 3 baris dan 3 kolom, sehingga matriks KLM disebut matriks 3 x 3. Oleh sebab itu, matriks adalah susunan bilangan-bilangan berbentuk persegi panjang atau persegi yang tersusun dalam baris dan kolom yang terletak di dalam kurung atau siku. Bilangan dalam kurung dinamakan elemen, unsur, atau komponen matriks. Pada matriks KLM diatas, elemen matriks nya adalah sebagai berikut K= {30, 10, 10}, L{10, 10, 30}, dan M={30, 10, 20}. Sebuah matriks mempunyai sebuah ordo m x n misalnya Am x n A2 x 3, maka ordo dari matriks A adalah 2 x 3. Dimana 2 adalah baris dan 3 adalah kolom. Apabila sebuah matriks ordonya m = n, maka matriks itu dinamakan matriks persegi, sedangkan jika m ≠ n disebut matriks persegi panjang. Ada istilah-istilah yang sering dikenal dalam materi matriks yaitu matriks persegi, matriks baris, matriks kolom, matriks nol, matriks diagonal, matriks identitas, matriks skalar, tranpos matriks, dan invers matriks. Simak di bawah ya penjelasannya! Istilah-istilah dalam Invers Matriks 1. Matriks Persegi Matriks persegi adalah matriks yang jumlah elemen pada baris dan kolom adalah sama. Selain itu, karena bentuknya berupa bujur sangkar, terdapat diagonal utama dan diagonal sekunder pada matriks persegi. Diagonal utama adalah bagian diagonal yang menurun ke bawah contohnya adalah {a11, a22, a33, ………., amn}. Sedangkan diagonal sekunder adalah bagian diagonal yang naik ke atas contohnya adalah {am1, a1n, dll}. 2. Matriks Baris Matriks baris adalah suatu matriks yang hanya mempunyai 1 baris saja, sehingga ordo dari tersebut adalah A1xn . Contoh dari matriks baris tersebut adalah A = [ 2 0 ] dan B = [ 3 -1 5 0 ]. Matriks A adalah matriks baris berordo 1 x 2. Sedangkan matriks B adalah matriks baris berordo 1 x 4. 3. Matriks Kolom Matriks kolom adalah suatu matriks yang hanya mempunyai 1 kolom saja. Matriks kolom adalah matriks yang berordo m x 1. Contoh matriks kolom adalah sebagai berikut Matriks A adalah matriks kolom berordo 3 x 1. Sedangkan matriks B adalah matriks kolom berordo 4 x 1. 4. Matriks Nol Matriks nol adalah matriks yang semua elemennya adalah bilangan nol. Matriks nol dinotasikan sebagai 0mxn . Contoh matriks nol adalah sebagai berikut 5. Matriks Identitas Matriks identitas atau sering disebut matriks satuan adalah matriks yang semua diagonalnya adalah sama yaitu bernilai 1. Simbol dari matriks identitas adalah miring . Contoh dari matriks identitas adalah sebagai berikut 6. Matriks Skalar Matriks skalar adalah matriks yang elemen-elemen diagonalnya bernilai sama. Sehingga a11= a22= ………= amn = k. Nilai k dapat bernilai sembarang. Contoh dari matriks skalar adalah sebagai berikut Matriks A adalah matriks skalar berordo 2. Sedangkan matriks B adalah matriks skalar berordo 3. 7. Transpos Matriks Transpos matriks adalah matriks baru yang diperoleh dengan dengan menukarkan letak baris dan kolom dari matriks sebelumnya. Transpos matriks disimbolkan dengan memberi aksen atau T di bagian atas pada matriks sebelumnya. Contoh A menjadi A’, B menjadi BT. Rumusan transpos matriks adalah sebagai berikut Contoh dari transpos matriks adalah sebagai berikut 8. Invers Matriks Invers matriks adalah sebuah kebalikan invers dari kedua matriks di mana apabila matriks tersebut dikalikan menghasilkan matriks persegi AB = BA = . Simbol dari invers matriks adalah pangkat -1 di atas hurufnya. Contoh matriks B adalah invers matriks A ditulis B = A–1 dan matriks A adalah invers dari matriks B ditulis A = B-1. Matriks A dan B merupakan dua matriks yang saling invers berkebalikan. Invers matriks terdiri dari dua jenis yaitu matriks persegi 2×2 dan matriks 3×3. Invers matriks A berordo 2 dapat langsung kita peroleh dengan cara Tukar elemen-elemen pada diagonal utamanya. Berikan tanda negatif pada elemen-elemen lainnya. Bagilah setiap elemen matriks dengan determinannya. Rumusan dari invers matriks persegi berordo 2 adalah sebagai berikut Jika matriks A = [ a b c d ] dengan determinan A = – maka invers matriks A dirumuskan sebagai berikut Dalam penyelesaian matriks 3 x 3, ada beberapa istilah yang harus kita ketahui yaitu determinan sarrus, minor, kofaktor, dan adjoin. Sebagai contoh apabila terdapat matriks 3 x 3 sebagai berikut A = [ a b c d e f g h i ]maka rumus untuk mencari inversnya adalah sebagai berikut Dari persamaan diatas, ada det A yaitu determinan A dan Adj A yaitu adjoin A, di mana rumus untuk mencari determinan A menggunakan rumus determinan sarrus yaitu sebagai berikut Nilai determinanya sarrusnya menjadi = a x e x + b x f x g – c x d x h – c x e x g – a x f x h – b x d x . Selanjutnya penentuan Adjoin A dapat terlihat dari gambar dibawah ini. Dari gambar terlihat terdapat simbol C kapital, di mana letak nilai C sudah ditranspos dari baris ke kolom. C merupakan singkatan dari kofaktor. Penentuan nilai kofaktor diperoleh dari penentuan nilai minor suatu matriks. Penentuan nilai kofaktor dan minor adalah sebagai berikut Bagaimana Quipperian dengan rumus-rumus di atas? Enggak usah bingung-bingung, cobain dulu nih contoh soal dari Quipper Blog tentang invers matriks 2 x 2 dan invers matriks 3 x 3. Sssttt… Jangan intip jawabannya sebelum kamu jawab sendiri, ya! Contoh Soal Nomor 1 Pembahasan Contoh Soal Nomor 2 Pembahasan Bagaimana Quipperian sudah mulai paham kan materi Matematika yang satu ini? Kalau kamu sudah mulai tertantang untuk mengerjakan soal-soal lainnya, silakan gabung di Quipper Video ya, karena masih banyak soal-soal seru di sana. Selain itu, Quipper Video juga mengulas materi Matematika lainnya secara fun, asyik dan pastinya simple. Sampai jumpa di artikel lainnya, ya! Penulis William Yohanes Rangkuman Materi MatriksOperasi Aljabar Pada MatriksPenjumlahan dan pengurangan matriksPerkalian matriksTranspos MatriksDeterminanInvers MatriksPenerapan Matriks dalam Sistem Persamaan LinearVideo Pembelajaran Matriks Versi 1 Kelas XIVideo Pembelajaran Matriks Versi 2 Kelas XIContoh Soal Matriks Jawaban +PembahasanRangkuman Materi MatriksOperasi Aljabar Pada MatriksMatriks adalah susunan bilangan-bilangan yang dinyatakan dalam baris dan kolomPenjumlahan dan pengurangan matriksDua buah matriks dapat dijumlahkan atau dikurangi jika memiliki ordo yang sama. Caranya yaitu dengan menjumlahkan atau mengurangi elemen seletak,ContohDiketahui matriks-matriks berikutTentukanA + BPerkalian matriksPerkalian Bilangan Real dengan MatriksJika A sebuah matriks dan k bilangan real maka hasil kali kA adalah matriks yang diperoleh dengan mengalikan masing-masing elemen matriks A dengan matriks berikutTentukanlah 3APerkalian dua matriksMatriks A dapat dikalikan dengan matriks B jika banyak kolom matriks A sama dengan banyak baris matriks B. Hasil kalinya adalah jumlah dari hasil kali elemen-elemen pada baris matriks A dengan elemen-elemen pada kolom matriks SoalDiketahui matriks-matriks berikutTentukan ABTranspos MatriksMatriks A transpos At adalah sebuah matriks yang disusun dengan cara menuliskan baris ke-i matriks A menjadi kolom ke–i dan sifat matriks adalah sebagai berikut.A + Bt = At + BtAtt = AcAt = cAt, c adalah konstantaABt = BtAtDeterminanDeterminan dari matriks A dinotasikan dengan AJika Berordo 2×2, menentukan determinannyaJika berordo 3×3 menggunakan kaidah SarrusInvers MatriksInvers dari matriks A dinotasikan dengan A-1Syarat suatu matriks A mempunyai A = 0, maka matriks A tidak mempunyai invers. Oleh karena itu, dikatakan matriks A sebagai matriks A ≠ 0, maka matriks A mempunyai invers. Oleh karena itu, dikatakan matriks A sebagai matriks Matriks dalam Sistem Persamaan LinearJika ada sistem persamaan linear + by = ecx + dy = fSistem persamaan linear tersebut dapat kita tuliskan dalam persamaan matriks matriks ini dapat kita selesaikan dengan menggunakan AX = B, maka X A-1B, dengan A ≠ 0Jika XA = B, maka X = BA-1, dengan A ≠ 0Video Pembelajaran Matriks Versi 1 Kelas XI Part 1 Part 2 Part 3 Part 4Materi & Contoh Soal Matriks Part 1Materi & Contoh Soal Matriks Part 2Materi & Contoh Soal Matriks Part 3Materi & Contoh Soal Matriks Part 4Video Pembelajaran Matriks Versi 2 Kelas XI Part 1 Part 2 Part 3Belajar Matematika Materi dan Contoh Soal Matriks Part IBelajar Matematika Materi dan Contoh Soal Matriks Part 2Belajar Matematika Materi dan Contoh Soal Matriks Part 3Contoh Soal Matriks Jawaban +PembahasanSoal UN 2009Diketahui matriks A = dan B = .jika A’ adalah transpose matriks A dan AX = B + A’ maka determinan matriks x adalah …463327-33-46PEMBAHASAN Jawaban DSoal SNMPTN DASAR 2011jika A adalah matriks 2×2 yang memenuhi dan maka hasil kali adalah …PEMBAHASAN Jawaban CSoal UN 2009Diketahui 3 A X Bt – C = dengan Bt adalah transpose matriks B, maka nilai a dan b masing-masing adalah …-1 dan 21 dan -2-1 dan -22 dan -1-2 dan 1PEMBAHASAN Jawaban ASoal SBMPTN 2014 DASARJika P = dan = 2 P -1dengan P-1 menyatakan invers matriks P, maka x+y=….01234PEMBAHASAN Jawaban CSoal UN 2008Diketahui matriks P = dan Q = Jika P-1 adalah invers matriks P dan Q-1 adalah invers matrik Q. Maka determinan matriks P -1Q-1 adalah…2231-1-10-223PEMBAHASAN Jawaban BSoal SNMPTN 2010 DASARJika M adalah matriks sehingga , maka determinan matriks M adalah ……1-10-22PEMBAHASAN Jawaban ASoal UN 2004Diketahui matriks S = dan M = . Jika fungsi fS+M, S-M adalah …PEMBAHASAN Jawaban ASoal SNMPTN 2012 DASARJika A = , B = , dan det AB = 12 maka nilai x adalah …-6-3036PEMBAHASAN Jawaban BSoal EBTANAS 2003Nilai x2 + 2xy + y2 yang memenuhi persamaan adalah …13579PEMBAHASAN Jawaban ASoal SBMPTN 2014 DASARJika matriks A = , B = Dan C = memenuhi A + B = Ct dengan Ct transpos matriks C maka 2x+3y = …34567PEMBAHASAN Jawaban CSoal EBTANAS 2000Diketahui A = , B = dan A2 = xA + yB. Nilai xy =…-4-1– ½1½2PEMBAHASAN Jawaban BSoal SNMPTN 2014 DASARJika dengan b2 ≠ 2a2 maka x + y = ….-2-1012PEMBAHASAN Jawaban CSoal SNMPTN 2012 DASARJika AB = dan det A =2 maka det BA-1 adalah ….86421PEMBAHASAN Jawaban DSoal SNMPTN 2009 DASARMatriks A = mempunyai hubungan dengan matriks B = . Jika matriks C = dan matriks D mempunyai hubungan serupa seperti A dengan B maka matriks C + D adalah …..PEMBAHASAN Jawaban DSoal UM UGM 2004Jika I matriks satuan dan matriks A = sehingga A2 = pA + ql maka p+q sama dengan ….15105-510PEMBAHASAN Jawaban DSoal Jika diketahui matriks Jika P + Q = R’ dan R’ merupakan transpose matriks R, Tentukan nilai x+y!PEMBAHASAN Diketahui P + Q = C’ Maka diperoleh6 + x = 3, maka x = -33 + x – y = 8, maka 3 + -3 – y = 8 y = -8Sehingga diperoleh x + y = -3 + -8 = -11Soal Diketahui matriks A = dan B = Tentukan matriks 4AB – BA!PEMBAHASAN Soal P = dan Q =. Matriks P – kQ merupakan matriks singular. Tentukan nilai kPEMBAHASAN Karena Matris P-kQ singular maka determinan matriks tersebut bernilai 0 P – 0 Maka k+1k = 12 k2 + k = 12 k2 + k – 12 = 0 k+4k-3 = 0 Maka nilai yang memenuhi adalah k = -4 dan k = 3Soal Diketahui matriks P = Q = , jika nilai deteminannya adalah 4, Tentukan nilai -2x + y – z = 0PEMBAHASAN Menentukan matriks PQ Diketahui determinannya = 4, maka 8-2x+y+z-0=4 Maka -2x+y+z = 0,5Soal Diketahui matriks P = dan Q = . Tentukan invers matriks PQ PQ-1PEMBAHASAN Menentukan PQ Menentukan PQ-1 Soal Tentukan matriks x jika berlaku PEMBAHASAN Jika Maka matriks X X = Soal Tiga buah matriks P = , Q = , R = . Tentukan nilai x yang memenuhi hubungan = RPEMBAHASAN Menentukan P-1 P-1 = invers matriks P P = P-1 = Menentukan nilai X = = R Maka 3x – 10 = 2 3x = 10 + 2 = 12 x = 4Soal Tentukan determinan matriks Q jika memenuhi PEMBAHASAN Jika Sehingga P. Q = R Menentukan salah satu determinan bisa menggunakan rumusan P.Q = R Q = 5.Q = 10 Q = 2Soal Diketahui sistem persamaan , Tentukan nilai 2x – 5y !PEMBAHASAN Sistem persamaan tersebut diubah menjadi PQ = R Q = Menentukan P-1 P-1 = Maka x = -1 dan y = 1, sehingga 2x – 5y = 2-1 – 51 = -7Soal Sebuah garis 3x + 2y = 6 ditranslasikan dengan matriks , dilanjutkan dilatasi dengan pusat O dan faktor 2. Tentukan hasil transformasinya!PEMBAHASAN Diketahui Translasi dengan M1 = Dilatasi pusat O dan faktor skala 2, M2 = Menentukan hasil transformasi Sehingga nilai x dan y x’ = 6+2x y’ = -8 + 2y Maka hasil transformasinya adalah ⇔ 3x’ – 6 + 2y’ + 8 = 12 ⇔ 3x’ + 2y’ = 14 ⇔ 3x + 2y = 14Soal Jika maka x = …12345PEMBAHASAN Log 3a + 1 = 1 3a + 1 = 10 3a = 9 a = 3 log b – 2 = log a b – 7 = a b – 7 = 3 b = 10 xlog a = log b xlog 3 = log 10 xlog 3 = 1 Maka nilai x = 3 Jawaban CSoal Diketahui persamaan matriks . Maka nilai x + y = …3120183541PEMBAHASAN Dari persamaan matriks di atas diperoleh 12 – x = 1 x = 11 -9 – x + y = 0 -9 – 11 + y = 0 y = 20 Maka x + y = 11 + 20 = 31 Jawaban CSoal Terdapat dua buah matriks P dan Q yaitu dan . Jika PQ = QP, maka = …PEMBAHASAN Jawaban CSoal Diketahui matriks tidak mempunyai invers. Hasil kali semua nilai x dari matriks tersebut adalah …½1-20-½PEMBAHASAN x3x – 1 – 2x + 2 = 20 3x2 – x – 2x – 4 = 14 3x2 – 3x – 18 = 0 → dibagi 3 x2 – x – 6 = 0 x – 3x + 2 = 0Maka jumlah semua nilai x yaitu x1 + x2 = 3 + -2 = 1 Jawaban BSoal Diketahui matriks tidak mempunyai invers. Hasil kali semua nilai x dari matriks tersebut adalah …-124-54PEMBAHASAN Matriks tidak mempunyai invers → A = 0 x2 – 3xx – 4 – x + 12x – 5 = 0 x3 – 4x2 – 3x2 + 12x – 2x2 – 5x + 2x – 5 =0 x3 – 7x2 + 12x – 2x2 – 3x – 5 = 0 x3 – 7x2 + 12x – 2x2 + 3x + 5 = 0 x3 – 9x2 + 15x + 5 = 0 a = 1 , b = -9 , c = 15 , d = 5 Maka hasil kali semua nilai x sebagai berikut Jawaban DSoal Jika . Maka determinan matriks Q adalah …01015-3PEMBAHASAN Maka determinan matriks Q yaitu = 2 x 3 – -1 x – 5 = 6 – 5 = 1 Jawaban CSoal Jika M adalah matriks sehingga , maka determinan matriks M adalah …0-1512PEMBAHASAN Misalkan adalah matriks A adalah matriks BMaka determinan matriks M, sebagai berikut Determinan M . determinan A = determinan B Determinan M . ps – rq = - sp + r – - rq + s Determinan M . ps – rq = - ps – sr – - rq – sr Determinan M . ps – rq = – ps – sr + rq + sr Determinan M . ps – rq = – ps + rq Determinan M = Jawaban BSoal Transpos matriks adalah . Jika AT = A-1 , maka ps – qr = …½ dan – ½0 dan 1dan –– 1 dan 0-1 dan 1PEMBAHASAN AT = A-1 det AT = det A-1 det AT = det AT . det A = 1 ps – qr2 = 1 ps – qr = ± 1 Jawaban BSoal matriks Maka nilai determinan dari matriks AB + C = …1014182450PEMBAHASAN Diketahui Maka AB + C sebagai berikut Determinan AB + C = 13 x 18 – 22 x 10 = 234 – 220 = 14 Jawaban BSoal matriks dengan 2A – B = C. Maka nilai x – y = …-14-365PEMBAHASAN Diketahui Matriks 2A – B = C 4 – x = 8 → x = – 4 6 + y = – 4 → y = – 10 Maka x – y = - 4 – - 10 = 6 Jawaban DSoal ini adalah persamaan matriksMaka nilai x + y = …-5PEMBAHASAN Menentukan nilai x sebagai berikut 6 + 8x = 0 8x = – 6 Menentukan nilai y sebagai berikut 4 – 2x + 2y = 0 Maka nilai Jawaban ESoal P yang memenuhi adalah …PEMBAHASAN Jawaban CSoal matriks . Maka nilai x + xy – 2y adalah …61231145PEMBAHASAN Menentukan nilai x 3 + x = 6 x = 3Menentukan nilai y y + 9 = 4x y + 9 = 4 . 3 y + 9 = 12 y = 3Maka x + xy – 2y ⇔ 3 + – 2. 3 ⇔ 3 + 9 – 6 ⇔ 6 Jawaban ASoal . Maka DetPQ + R = …-1925-3014-23PEMBAHASAN Maka DetPQ + R = – = -23 Jawaban ESoal matriks tidak mempunyai invers. Maka nilai x adalah …1-22-43PEMBAHASAN Matriks yang tidak memiliki invers jika determinan matriks tersebut adalah 0. Maka Det P = 0 3x + 26 – 42x – 2 = 0 18x + 12 – 8x + 8 = 0 10x + 20 = 0 10x = – 20 x = – 2 Jawaban B[adinserter block=”3″] Kelas 11 SMAMatriksKesamaan Dua MatriksDiketahui matriks A=a b 0 1, B=6 1 -8 7, C=2 -2 1 c, dan D=1 -1 0 2. Jika 2A+B^T=CD dan B^T=transpos matriks B, nilai dari a+b-c= ...Kesamaan Dua MatriksOperasi Pada MatriksMatriksALJABARMatematikaRekomendasi video solusi lainnya0243Diketahui matriks A berukuran 2x2 dan B=-1 3 0 2. Jika ...0253Diketahui matriks A=[-3 1 5 10 2 -4] dan B=[3 -2 4 2 0 1]...0213Diketahui matriks A = 3 0 2 0; B = 2 1 3 2; dan...0438Diketahui matriks P = a-2c 3b+d 5 -6, Q = -7 c+1 -6 3b...Teks videoHalo friend di sini kita punya soal tentang matriks yang diberikan pada matriks A matriks B seperti ini matriks A dan matriks B jika dua matriks A ditambah dengan matriks B transpose ataupun di sini ditulis sebagai transpose matriks b. Sama saja di sini perhatikan bahwa untuk dua matriks A ditambah matriks B transpose = matriks X matriks b maka nilai dari a kecil B kecil m kecil berarti di sini kita akan mulai terlebih dahulu dari persamaan yang diberikan jadi perhatikan bahwa kita punya dua matriks A ketika kita jumlahkan dengan transpose dari matriks B ini = matriks n x matriks D kita dapat Tuliskan persamaannya disini perhatikan bahwa untuk dua matriks A berarti kita punya adalah 2 dikalikan dengan a kecil B kecil 1 ditambah dengan transpose dari matriks B transpose dari matriks 6187 seperti ini ini akan sama dengan matriks C ditabung adalah 2 min 21 C kecil dikali dengan matriks B yaitu 1 - 102 Di sini perlu diperhatikan bahwa sebenarnya untuk Perkalian antara skalar dengan matriks maknanya adalah untuk setiap elemen pada matriks A ini akan kita kalikan dengan skala tersebut jadi setiap elemen matriks akan kita kalikan dengan 2 maka kita dapati di sini menjadi 2 dikalikan dengan a + ini 2 kita kalikan dengan B2 kita kalikan dengan 02 kita kalikan dengan 1 lalu untuk matriks transpose perlu diperhatikan bahwa makna dari matriks transpose adalah kita menukar antara baris dengan kolom jadi yang awalnya matriks B ini kita punya baris pertama nya adalah 61 baris keduanya adalah Min 87 kolom pertamanya adalah 6 Min 8 kolom keduanya adalah 17, maka sekarang kita tukar antara baris dengan kolom nya yang berarti untuk 61 ini yang Pertama kita jadikan sebagai penolong yang pertama maka kita dapat diisikan di sini menjadi ditambahkan 61 nya taruh di sebalik kolom pertama lalu perhatikan bahwa untuk Min 8 ini sebagai barisan kedua kita taruh sebagai kolom yang kedua pada masih transposenya jadi kita punya disini Min 8 lalu di sini 7 makanya kan = perhatikan bahwa untuk matriks t jika kita punya Perkalian antara dua buah matriks kita biarkan terlebih dahulu nanti kita akan kerjakan di bagian bawah supaya tidak terlalu sempit tempatnya jadi sementara kita Tuliskan terlebih dahulu. Sekarang kita kan Sederhanakan bentuk-bentuk yang ini 2 dikali a tentunya 2 a 2 kali B berarti 2 b 2 dikali 002 dikali 1 tentu saja adalah 2 lalu kita jumlahkan dengan tamunya 6 Min 817 akan sama dengan seni kita punya dua min 21 dikali dengan 1 Min 102 bawa disini kita punya penjumlahan antara dua buah matriks. Di manakah yang kita menjumlahkan dua buah matriks berarti sebenarnya kita jumlahkan adalah untuk setiap elemen yang terletak pada posisi yang sama jadi misalkan dua ini kita jumlahkan dengan 62 B kita jumlahkan dengan 80 kita jumlahkan dengan 12 kita jumlahkan 7 akibatnya disini kita mendapati bahwa matriks hasil penjumlahannya adalah berarti kita dapat jumlah karya seni untuk 2 dengan 6 berarti kita punya adalah 2 A + 6 lagu untuk 2 B ditambah dengan 8 berarti menjadi seperti ini Kalau kita punya juga 0 ditambah dengan 1 berarti 0 + 1 x 2 ditambah dengan 7 kita punya adalah 2 ditambah dengan 7 seperti ini ya kan = 2 min 21 kita kalikan dengan 1 - 102 Di sini perlu diperhatikan bahwa sebenarnya kita dapat Sederhanakan bentuk-bentuk yang ini berarti 2 A + 6, b. Biarkan kelompok 2 B + Min 8 sama saja dengan 2 B dikurang 80 + 1 adalah 12 + 7 adalah 9 sekarang barulah kita lakukan Perkalian antara matriks C dengan D perhatikan di sini bahwa kita Buya matriks C baik d ini adalah matriks yang berordo 2 * 2 jadinya jika kita perhatikan ketika kita punya istri memiliki 2 baris dan 2 kolom kita Tuliskan ordo nya adalah 2 * 2 dan matriks D juga ordonya 2 * 2 karena memiliki 2 baris dan 2 kolom syarat perkalian dua buah matriks ini terdefinisi Apabila banyak Kolom pada matriks A = banyak baris pada matriks D yang memang sudah sama berarti perkaliannya terdefinisi dan nanti hasil perkaliannya akan berordo 2 * 2 yang berarti memiliki 2 baris dan 2 kolom juga jadi perlu diperhatikan bahwa berarti kita mulai terlebih dahulu dari baris ke-1 kolom pertama di mana cara mengalikan nya adalah kita mulai terlebih dahulu antara Perkalian antara pertama dengan kolom yang pertama jadi saya perkalian matriks adalah Perkalian antara baris dengan kolom cara mengalirkannya adalah untuk setiap elemennya kita kalikan yang bersangkutan lalu kita jumlah jari Bisa kan gua ini kita kalikan dengan 1 lalu kita jumlahkan min 2 yang dikalikan 60 jadi kita dapati nanti untuk elemen hasil perkalian pada baris pertama dengan kolom pertama adalah 2 dikali 1 ditambah dengan min 2 dan X dengan no telepon untuk elemen yang terletak pada baris ke-1 kolom kedua ini adalah hasil perkalian antara baris pertama dengan kolom yang kedua Ini kita kalikan antara 2 dengan min 1 kalau kita jumlahkan dengan min 2 yang dikalikan dengan 2 begitupun seterusnya kita punya untuk baris kedua dengan kolom pertama Sekarang berarti 1 kita kalikan dengan 10 dari masuknya 1 dari 1 ditambah dengan Sin X no. Terakhir di sini untuk baris kedua kolom ke-2 berarti kita punya 1 dikalikan dengan minus 1 lalu di sini kita punya ditambah dengan yang dikalikan dengan 2 jadi kita udah pasti seperti ini akibatnya kita dapat menuliskan bahwa di sini untuk 2 a ditambah dengan 62 B 8 19 ini akan sama dengan kita punya 2 dikali 1 ditambah dengan min 2 x 0 tentu saja adalah 2 X min 2 ditambah dengan tamunya adalah min 6 x 1 ditambah dengan 0 adalah 1 x min 1 + 2 c adalah 2 C dikurang 1 jadi kita dapati seperti ini Sekarang perlu diperhatikan bahwa kita punya dua matriks ini sama di mana dua matriks dikatakan sama jika dan hanya jika setiap elemen yang terletak pada posisi yang sama dan nilai sama jadi di sini tinggal sama saja 2 KCL + 6 ini harus = 22 B kecil Min 8 hari = Min 61 = 1 sudah benar 9 harusnya = 2 sekon cermin satu akibatnya dari sini kita mendapati bahwa untuk 2 kecil ditambah 6 ini sama dengan 2 berarti untuk 2 kecil kita punya adalah 2 dikurang 6 yaitu Min 4 berarti untuk a ke c adalah 4 dibagi dua yaitu min 2 kalau kita juga punya disini bahwa untuk yang 2 B Min 8 harus = min 6 jadi kita dapat dituliskan seperti ini berarti perhatikan bahwa untuk 2 B min 6 + 8 itu 2 berarti Beni adalah 2 per 2 yaitu 1 + 1 = 1 sudah benar 9. Haruskah = 2 sekon min 1 berarti kita dapat Bilang sama dengan buah kecil min 1 berarti untuk buang air kecil adalah sila ke-1 yaitu 10, maka untuk nilai dari sin kecilnya adalah 10 per 2 yaitu 5 akibatnya Di sini perlu diperhatikan bahwa kita sudah berhasil mendapatkan nilai a b dan c nya kita dapat melanjutkan Namun kita akan hapus bagian supaya tidak terlalu penuh Sehingga dalam kasus ini kita punya bahwa untuk a kecil + B kecil c kecil adalah min 2 + 1 dikurang 5 yang hasilnya adalah minus 6 b. Pilih opsi yang B sampai jumpa di soal berikutnyaSukses nggak pernah instan. Latihan topik lain, yuk!12 SMAPeluang WajibKekongruenan dan KesebangunanStatistika InferensiaDimensi TigaStatistika WajibLimit Fungsi TrigonometriTurunan Fungsi Trigonometri11 SMABarisanLimit FungsiTurunanIntegralPersamaan Lingkaran dan Irisan Dua LingkaranIntegral TentuIntegral ParsialInduksi MatematikaProgram LinearMatriksTransformasiFungsi TrigonometriPersamaan TrigonometriIrisan KerucutPolinomial10 SMAFungsiTrigonometriSkalar dan vektor serta operasi aljabar vektorLogika MatematikaPersamaan Dan Pertidaksamaan Linear Satu Variabel WajibPertidaksamaan Rasional Dan Irasional Satu VariabelSistem Persamaan Linear Tiga VariabelSistem Pertidaksamaan Dua VariabelSistem Persamaan Linier Dua VariabelSistem Pertidaksamaan Linier Dua VariabelGrafik, Persamaan, Dan Pertidaksamaan Eksponen Dan Logaritma9 SMPTransformasi GeometriKesebangunan dan KongruensiBangun Ruang Sisi LengkungBilangan Berpangkat Dan Bentuk AkarPersamaan KuadratFungsi Kuadrat8 SMPTeorema PhytagorasLingkaranGaris Singgung LingkaranBangun Ruang Sisi DatarPeluangPola Bilangan Dan Barisan BilanganKoordinat CartesiusRelasi Dan FungsiPersamaan Garis LurusSistem Persamaan Linear Dua Variabel Spldv7 SMPPerbandinganAritmetika Sosial Aplikasi AljabarSudut dan Garis SejajarSegi EmpatSegitigaStatistikaBilangan Bulat Dan PecahanHimpunanOperasi Dan Faktorisasi Bentuk AljabarPersamaan Dan Pertidaksamaan Linear Satu Variabel6 SDBangun RuangStatistika 6Sistem KoordinatBilangan BulatLingkaran5 SDBangun RuangPengumpulan dan Penyajian DataOperasi Bilangan PecahanKecepatan Dan DebitSkalaPerpangkatan Dan Akar4 SDAproksimasi / PembulatanBangun DatarStatistikaPengukuran SudutBilangan RomawiPecahanKPK Dan FPB12 SMATeori Relativitas KhususKonsep dan Fenomena KuantumTeknologi DigitalInti AtomSumber-Sumber EnergiRangkaian Arus SearahListrik Statis ElektrostatikaMedan MagnetInduksi ElektromagnetikRangkaian Arus Bolak BalikRadiasi Elektromagnetik11 SMAHukum TermodinamikaCiri-Ciri Gelombang MekanikGelombang Berjalan dan Gelombang StasionerGelombang BunyiGelombang CahayaAlat-Alat OptikGejala Pemanasan GlobalAlternatif SolusiKeseimbangan Dan Dinamika RotasiElastisitas Dan Hukum HookeFluida StatikFluida DinamikSuhu, Kalor Dan Perpindahan KalorTeori Kinetik Gas10 SMAHukum NewtonHukum Newton Tentang GravitasiUsaha Kerja Dan EnergiMomentum dan ImpulsGetaran HarmonisHakikat Fisika Dan Prosedur IlmiahPengukuranVektorGerak LurusGerak ParabolaGerak Melingkar9 SMPKelistrikan, Kemagnetan dan Pemanfaatannya dalam Produk TeknologiProduk TeknologiSifat BahanKelistrikan Dan Teknologi Listrik Di Lingkungan8 SMPTekananCahayaGetaran dan GelombangGerak Dan GayaPesawat Sederhana7 SMPTata SuryaObjek Ilmu Pengetahuan Alam Dan PengamatannyaZat Dan KarakteristiknyaSuhu Dan KalorEnergiFisika Geografi12 SMAStruktur, Tata Nama, Sifat, Isomer, Identifikasi, dan Kegunaan SenyawaBenzena dan TurunannyaStruktur, Tata Nama, Sifat, Penggunaan, dan Penggolongan MakromolekulSifat Koligatif LarutanReaksi Redoks Dan Sel ElektrokimiaKimia Unsur11 SMAAsam dan BasaKesetimbangan Ion dan pH Larutan GaramLarutan PenyanggaTitrasiKesetimbangan Larutan KspSistem KoloidKimia TerapanSenyawa HidrokarbonMinyak BumiTermokimiaLaju ReaksiKesetimbangan Kimia Dan Pergeseran Kesetimbangan10 SMALarutan Elektrolit dan Larutan Non-ElektrolitReaksi Reduksi dan Oksidasi serta Tata Nama SenyawaHukum-Hukum Dasar Kimia dan StoikiometriMetode Ilmiah, Hakikat Ilmu Kimia, Keselamatan dan Keamanan Kimia di Laboratorium, serta Peran Kimia dalam KehidupanStruktur Atom Dan Tabel PeriodikIkatan Kimia, Bentuk Molekul, Dan Interaksi Antarmolekul

diketahui matriks a 2 0